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A Fourier transform for sheaves on real tori
Part II. Relative theory
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Abstract

If X is a symplectic family of Lagrangian tori, the dual familyX̂ has a natural complex structure.
We define, for any dimension ofX, a Fourier transform which yields a bijective correspondence
between local systems supported on Lagrangian submanifolds ofX and holomorphic vector bun-
dles supported on complex subvarieties ofX̂ (suitable conditions being verified on both sides).
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1. Introduction

The idea that, in accordance with the Strominger–Yau–Zaslow conjecture [21], a kind
of Fourier–Mukai transform should describe transformation properties of D-branes under
string-theoretic mirror symmetry dates back to 1996 [8]. The original Fourier–Mukai trans-
form, mapping coherent sheaves on an abelian varietyX to coherent sheaves on the dual
varietyX̂, was introduced in [18]. A relative Fourier–Mukai transform for elliptic varieties
was developed in [4–6,14] and was shown to describe a correct D-brane transformation
pattern in the case of K3 surfaces [4,3]. An analogous result was shown to hold for elliptic
Calabi–Yau three-folds in [1].

In the case of Calabi–Yau three-folds which are fibred in (special Lagrangian) real 3-tori,
a similar description should be provided by a “real” relative Fourier transform. The presence
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of singular fibers raises here a big problem because it is not clear how to handle them. As
a first step, one may consider the simplified case when there are no singular fibers. In [7]
an “absolute” version of such a transform was introduced (see also [2]). Here we begin the
study of a relative version of that theory.

If X is a symplectic family of smooth Lagrangian tori, the dual familyX̂ has a natural
complex structure. Then the relative Fourier transform yields a correspondence between
local systems supported on Lagrangian submanifolds ofX and holomorphic vector bundles
supported on complex subvarieties ofX̂, where both sets of data satisfy suitable conditions
(cf. later in this section). Some results along these lines were already contained in [2] but
we strengthen and extend them considerably (cf. also [16]). We also carefully spell out the
conditions on the submanifoldS of X which ensure that the support of the transformed
sheaf is a complex submanifold ofX̂.

The correspondence we get closely resembles Fukaya’s homological mirror symmetry
[11]. Comparison with that approach suggests that in order to extend the results presented in
this paper to more general Lagrangian submanifolds (e.g. when the Lagrangian submanifold
S is ramified over the base of the fibrationX), or to the situation whenX has singular fibers,
it is necessary to allow for some kind of quantum corrections. Future extensions of the
theory should also allow for the inclusion of a B-field and should investigate the possibility
of describing the correspondence between the Floer homology ofX and the algebraic
cohomology ofX̂ in terms of the Fourier–Mukai transform studied in this paper. One could
also study the relation between the transform presented in this paper and the constructions
of Laumon [15] and Rothstein [20]; the local systems we transform areD-modules, the
same objects considered by these authors. This might also relate to possible applications to
generalizations of the Krichever correspondence along the lines of [19].

We describe now the contents of this paper. In Section 2, we consider again the absolute
case and complete the paper [7] by studying the transformation of a local system supported
on an affine subtorus of a given torus. Section 3 starts our investigation of the relative case by
setting up the general framework. In considering local systems supported on a Lagrangian
submanifold of a symplectic torus fibrationX → B, we first analyze the two extreme
cases, i.e. when the submanifold is a fiber ofX and when it is a Lagrangian section ofX
(Section 3.1). In the second case, one finds that the transform is a holomorphic hermitian
vector bundle onX̂ which is flat along any fiber of̂X, i.e. we get what may be called a
holomorphic family of flat vector bundles. This sets up a bijective correspondence between
local systems supported on Lagrangian sections ofX and holomorphic bundles with unitary
compatible, flat along the fiber directions ofX̂ (and satisfying some further conditions).

The intermediate, non-transversal cases (i.e. when one considers a Lagrangian subman-
ifold S ⊂ X whose projection ontoB has a dimension strictly between 0 and dimB) are
more involved, and are analyzed in Section 4. To get a well-behaved transform one needs
to assume, loosely speaking, thatS intersects the fibersXb ofX (hereb ∈ B) along subtori
Sb of Xb, and that the vertical tangent spaces toS undergo parallel displacement under
the natural Gauss–Manin connection defined inTX. Under this condition the transform of
a local system onS is a holomorphic vector bundle supported on a complex submanifold
of X̂.

These result hold true whatever is the dimension ofX, and do not requireX to be
Calabi–Yau (and not even complex). One should note that, whenX is a Calabi–Yau manifold,
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the additional condition on the supportS we have previously described is in general quite
unrelated to the condition ofS being special (in addition to being Lagrangian), and co-
incides with the latter only whenX is complex three-dimensional, and the projection of
the Lagrangian submanifold onto the base is (real) one-dimensional (this corresponds to a
transformed sheaf which is a line bundle supported on a curve inX̂). It is not clear to the
authors whether this situation has any implication or motivation in string theory.

In Section 6, we draw some conclusions, in particular we comment upon the relation of
this construction to Fukaya’s homological mirror symmetry.

Two Appendices contain two proofs that, sketchy as they are, are too lengthy to be
included in the main text.

We have tried to keep this paper independent of [7] as much as possible but some knowl-
edge of the results and notation of that paper will help the reader.

2. The absolute case again: subtori

In this section, we complete the paper [7] by describing the transformation ofU(1) local
systems supported on affine subtori of a giveng-dimensional torusT = V/Λ. We will
denote byT̂ the dual torus and byP the normalized Poincaré sheaf onT × T̂ . By U(1)
local system on a differentiable manifoldX we mean a (smooth) complex line bundleL on
X with a flatU(1) connection∇. The sheafL = ker∇ is a locally freeC-module onX, and
one hasL = L⊗C C∞X . We shall use quite interchangeably the notationsL and(L,∇).

Definition 1. A subtorus ofT is a subsetS ⊂ T of the formS = W/W ∩ Λ, whereW
is k-dimensional linear subspace ofV such that the latticeW ∩ Λ has rankk. An affine
subtorus is a subset of the formS + x for an elementx ∈ T .

Let L be aU(1) local system supported on ak-dimensional affine subtorusS of T . Let
pS and p̂S the natural projections ofS × T̂ onto the factors. By restricting the sheaves
P ⊗Ωm,0 to the closed submanifoldS × T̂ ⊂ T × T̂ one obtains a complex1

0 → ker∇L
1 → p∗

SL⊗ P|S×T̂
∇L

1→p∗
SL⊗ (P ⊗Ω1,0)|S×T̂

∇L
1→p∗

SL⊗ (P ⊗Ω2,0)|S×T̂ → · · · .

Proposition 1.

1. Rj p̂S,∗ ker∇L
1 = 0 for allj �= k.

2. Rkp̂S,∗ ker∇L
1 is supported on a(g − k)-dimensional affine subtoruŝS of T̂ , which is

normal toS.
3. if L is trivial, then Ŝ goes through the origin of̂T , otherwise it is an affine subtorus

translated by the element ofT̂ corresponding toL∗.

1 Let us recall thatp, p̂ denote the projections ofT × T̂ onto the factors; the sheavesΩm,n are defined as
p∗Ωm

T ⊗ p̂∗Ωn

T̂
; and∇L

1 is theΩ1,0 component of the coupled connectionp∗∇ ⊗ 1+ 1⊗∇P .
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4. The sheafRkp̂S,∗ ker∇L
1 on Ŝ is aU(1) bundle, and has a compatible flat connection

which makes it into aU(1) local systemL̂.

Proof. The proof of this proposition in given in Appendix A. �

Let us describe the content of this proposition in local coordinates; while this is just simple
linear algebra, the explicit equations we are going to write will help to understand the more
complicated relative situation. Let(y1, . . . , yg) be flat coordinates inT , (w1, . . . , wg) the
corresponding dual flat coordinates in the dual torusT̂ , and write the equation for the affine
subtorusS in the form

g∑
j=1

aij y
j + χi = 0, i = 1, . . . , g − k.

The equations
∑g

j=1 a
i
j y

j = 0 describe a corresponding “linear subtorus”S0; the equations
of the dual torusS∗0 may be written implicitly as

g∑
j,�=1

aij g
j� w� = 0, i = 1, . . . , g − k,

where the constant functionsgj� are the components of the natural flat metric onT̂ , or
explicitly as

w� =
k∑

m=1

ãm� ξm, � = 1, . . . , g (1)

for a suitablek × (g − k) matrix ã. The specification of the local systemL corresponds to
a choice of the parameters(ξ1, . . . , ξk) in Eq. (1). The support̂S of the transformed local
system is given by equations

g∑
j=1

γ
j
m wj + ξm = 0, m = 1, . . . , k,

whereγ j� is a matrix satisfying
∑g

j=1 γ
j
� a

i
j = 0. The local system̂L is given by the point

in Ŝ∗0 whose coordinates are the numbersχi .

The pair(Ŝ, L̂) is theFourier–Mukai transformof the pair(S,L). Of course, we may
perform the same transformation from̂T toT (in addition to the obvious replacements, one
twists byP∨ instead ofP), and we have:

Proposition 2. The Fourier–Mukai transform of(Ŝ, L̂) is naturally isomorphic to the pair
(S,L).

Let Lock(T ) be the category ofU(1) local systems supported on affine subtori ofT of
dimensionk. Objects of this category are triples(S,L,∇) (whereS is an affine subtorus in
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T , L a line bundle onS, and∇ a flat unitary connection onL) modulo isomorphisms, i.e.
modulo vector bundle isomorphisms which commute with the actions of the connections
(the two line bundles having the same support). The space of morphisms between two
objects(S1,L1,∇1) and(S2,L2,∇2) of Lock(T ) is defined by taking into account that the
intersectionS = S1∩S2 is a (possibly empty) finite collection of (possibly zero-dimensional)
affine toriRi , and one sets

Mor((S1,L1,∇1), (S2,L2,∇2)) = ⊕iMor∇((Ri,L1,∇1), (Ri,L2,∇2)),

where Mor∇((Ri,L1,∇1), (Ri,L2,∇2)) is the set of morphisms betweenL1|Ri andL2|Ri
compatible with the connections∇1 and∇2. It is easy to check that the Fourier–Mukai
transform yields an equivalence of categories

Lock(T ) � Locg−k(T̂ ).

3. Relative case: the geometric setting

Let (X, ω) be a connected symplectic manifold admitting a mapf : X → B whose fibers
areg-dimensional smooth Lagrangian tori. We assume thatf admits a Lagrangian section
σ : B → X; according to [9], this makesX isomorphic, as a symplectic manifold fibred in
Lagrangian submanifolds, to a quotient bundleT ∗B/Λ, whereΛ is a Lagrangian covering
ofB. The symplectic formω provides an isomorphism VertTX� f ∗T ∗B. We also have an
identificationTB� R1f∗R⊗C∞B , and this endowsTBwith a flat, torsion-free connection
∇GM—the Gauss–Manin connection of the local systemR1f∗R. The holonomy of this
connection coincides with the monodromy of the coveringΛ (indeed, the horizontal tangent
spaces may be identified with the first homology groups of the fibers with real coefficients).

Let X̂ = R1f∗R/R1f∗Z be the dual family, with projection̂f : X̂ → B. Dualizing the
isomorphism VertTX� f ∗T ∗B, we get a new isomorphism VertT X̂ � f̂ ∗TB; combining
this with the splitting of the Atiyah sequence

0 → VertT X̂ → T X̂ → f̂ ∗TB→ 0

provided by the Gauss–Manin connection (which can be regarded as a connection onT X̂),
one has a splitting

T X̂ � f̂ ∗TB⊕ f̂ ∗TB.

By letting J (α, β) = (−β, α) this induces a complex structure onX̂, such that the holo-
morphic tangent bundle tôX is isomorphic, as a smooth bundle, tof̂ ∗TB⊗ C.

OnX we consider local coordinates symplectic coordinates(x1, . . . , xg, w1, . . . , wg)

such that thew are dual coordinates ofB, and for fixed values of thex, the y are flat
coordinates on the corresponding torus (local action–angle coordinates). Analogously, we
may consider on̂X local coordinates(x1, . . . , xg, . . . , w1, . . . , wg) such that thew are dual
coordinates to they. Local holomorphic coordinates on̂X are given byzj = xj + iwj .

In this relative context, it is natural to consider the fiber productZ = X ×B X̂ of the
fibrationsX andX̂. We shall denote byp, p̂ the projections ofZ onto its factors. OnZ there
is a Poincaré bundleP which may be described in an intrinsic way, however, it is enough
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to say thatP is a line bundle onZ = X×B X̂ equipped with aU(1) connection∇P whose
connection form may be written in a suitable gauge as

A = 2i π
g∑
j=1

wj dyj .

Moreover,P has the property that for everyξ ∈ X̂, P|p̂−1(ξ) is isomorphic toLξ (the line
bundle parametrized byξ ) as aU(1) bundle.

If S is a closed submanifold ofX, we defineZS = S×B X̂, with projectionspS , p̂S onto
the two factors, and denotePS = P|ZS . We consider the exact sequence2

0 → p̂∗
SΩ

1
X̂S

→ Ω1
ZS

r→Ω1
ZS/X̂

S
→ 0 (2)

which defines the sheafΩ1
ZS/X̂

S
of p̂S-relative differentials. HerêXS = p̂S(ZS), andS is

assumed to be chosen so thatp̂S : ZS → X̂S is a smooth submersive map. This assumption
will be tacitly understood in the remainder of this section, while in the later sections it will
be automatically satisfied. The Gauss–Manin connection∇GM provides a splitting of this
exact sequence.

Analogously, ifŜ is a closed submanifold of̂X, we have a split exact sequence

0 → p∗
Ŝ
Ω1
XŜ

→ Ω1
Z
Ŝ

r̂→Ω1
Z
Ŝ
/XŜ

→ 0 (3)

which defines the sheafΩ1
Z
Ŝ
/XŜ

of p̂
Ŝ
-relative differentials. For every sheafE ofC∞S -modules

endowed with a flat connection∇, one defines the following differential operators:

1. The operator

∇E : p∗
SE ⊗ PS ⊗Ω•

ZS
→ p∗

SE ⊗ PS ⊗*•+1
ZS

,

obtained by coupling the pullback of the connection∇ with the connection of the Poincaré
sheaf∇P .

2. The operators∇E
r , ∇E

r̂
obtained by composing∇E with the projectionsr, r̂ onto the

relative differentials. One has(∇E
r )

2 = (∇E
r̂
)2 = 0.

We shall consider the higher direct imagesRip̂S,∗ ker∇E
r , which are the cohomology

sheaves of the complex

p̂S,∗(p∗
SE ⊗ PS)

∇E
r→p̂S,∗(p∗

SE⊗PS⊗Ω1
ZS/X̂

S
)
∇E
r→p̂S,∗(p∗

SE ⊗ PS ⊗Ω2
ZS/X̂

S
)→ · · ·

(4)

2 If f : X → Y is a differentiable map between two differentiable manifolds, andF any sheaf onY , we shall
denote byf−1F the sheaf-theoretic inverse image ofF ; if F is a sheaf ofC∞

Y -modules, we shall denote byf ∗F
its inverse image as a sheaf of modules, i.e.

f ∗F = f−1F ⊗f−1C∞
Y

C∞
X .
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As in the usual theory of the Fourier–Mukai transform, it is convenient to introduce a
WIT notion.3

Definition 2. The pair(E,∇) is said to be WITk if Rip̂S,∗ ker∇E
r = 0 for i �= k.

Now we want to state a condition for the sheavesRj p̂S,∗ ker∇E
r to admit a connection

induced, so to say, by the part of the operator∇E complementary to∇E
r . The splitting of

the exact sequence (2) provided by the Gauss–Manin connection∇GM allows one to make
a splitting

∇E = ∇E
r + ∇̂E .

The∇̂E operator induces connections on the higher direct imagesRj p̂S,∗ ker∇E
r provided

it anticommutes with the operator∇E
r . The anticommutator∇E

r ◦ ∇̂E + ∇̂E ◦ ∇E
r may be

regarded as an operatorp∗
SE ⊗ PS → p∗

SE ⊗ PS ⊗Ω2
ZS

and as such it coincides with the
restriction toZS of 1⊗ F, whereF is the curvature of the connection∇P of the Poincaré
bundle. As a consequence, we have:

Proposition 3. Assume that the sheafE is supported on a closed submanifoldS ⊂ X,
the sheafRj p̂S,∗ ker∇E

r is supported on a closed submanifoldŜ ⊂ X̂, and the curvature
operatorF vanishes onS ×B Ŝ ⊂ Z. Then the operator̂∇E induces a connection on the
sheafRj p̂S,∗ ker∇E

r .

Eventually, we may introduce the Fourier–Mukai transform we shall study in the remain-
der of this paper.

Definition 3. If the pair (E,∇) is WITk and satisfies the condition in Proposition 3, the
pair (Ê, ∇̂), whereÊ = Rkp̂S,∗ ker∇E

r and∇̂ is the connection induced as in Proposition
3, is called the Fourier–Mukai transform of(E,∇).

We end this section with an easy lemma which is useful when checking if the WIT
property holds for some sheaf and connection.

Lemma 1. Let (E,∇) be a local system supported on a closed submanifoldS ofX which
intersects every fiberXb along a closed submanifoldSb. For everyj = 1, . . . , g there is a
canonical isomorphism

(Rj p̂S,∗ ker∇E
r )|X̂b

∼→Rj p̂Sb,∗ ker∇Eb
1 , (5)

whereb = p̂(ξ), p̂b : Xb × X̂b → X̂b is the projection ontôXb andEb is the restriction of
E to Sb.

3 Let us recall that “WIT” stands for “weak index theorem”.
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Proof. The restriction(Rj p̂S,∗ ker∇E
r )|X̂b is defined aŝj−1

b (Rj p̂S,∗ ker∇E
r ) ⊗ĵ−1

b C∞
X̂

C∞
X̂b

(herejb : Sb → X andĵb : X̂b → X̂ are the natural inclusions). The result is proved by
applying the topological base change [12] to the diagram. �

3.1. Fibers and Lagrangian sections

In studying the transformation of local systems supported by Lagrangian submanifolds we
start by considering the case where the submanifold is either a fiber or a Lagrangian section.
The first case is the simplest to deal with. It is enough to consider the case rankL = 1, since
the higher rank case reduces immediately to this. Let us notice that the isomorphism class
of the local systemL∗ singles out a point in̂X, which we denote by [L∗]. SinceXb×B X̂ ∼=
Xb × X̂b, we obtain the usual “tautological” property of the Fourier–Mukai transform.

Proposition 4. The pair(L,∇) ≡ L is WITg,and the sheaf̂L = Rgp̂∗ ker∇L
r is isomorphic

to the skyscraperC([L∗]).

Now we construct a transform for local systems supported on sections ofX → B. This
will generalize the tautological correspondence that in the absolute case holds between
skycrapers of length one on a torus andU(1) local systems on the dual torus. The transform
will produce holomorphic line bundles on̂X with compatibleU(1) connections which
satisfy some further conditions.

Let S ⊂ X be the image of a Lagrangian section ofX → B, andL ≡ (L,∇) a unitary
local system onS.

Proposition 5.

1. The pair(L,∇) is WIT0.
2. L̂ = p̂S,∗ ker∇L

r is a rank-one locally freeC∞
X̂

-module.

Proof. Both claims follows from Lemma 1 and the absolute case. �

SinceF|S×BX̂
= 0 the conditions of Proposition 3 are met, so thatL̂ carries aU(1)

connection∇̂. Let us express this connection in (action–angle) coordinates. We write the
local equations ofS asyj = εj (x); asS is Lagrangian, one has∂εj /∂xm = ∂εm/∂x

j .
Moreover, thex can be thought of as local coordinates onS. If the connection form associated
with the local systemL isA = i

∑g

j=1Aj(x)dxj , with ∂Aj/∂x� = ∂A�/∂x
j , then∇̂ may

be represented by the connection form

Â = i

g∑
j=1

Aj(x)dxj − 2iπ
g∑
j=1

εj (x)dwj .
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In these coordinates the components of the connection formÂ do not depend on thew.
Moreover, both the horizontal and vertical part (with respect to the splitting given by the
Gauss–Manin connection) are flat, and in particular, the restriction of∇̂ to any fiberX̂b of
X̂ → B is flat.

Remark 1. The independence of the componentsÂ on thew can be stated invariantly in
a variety of ways. For instance, one can use the fact that the zero-section ofX̂ makes the
latter into a (trivial) principalT g-bundle overB; then,∇̂ commutes with the action ofT g

on X̂.

The Hodge components of curvature form̂F of this connection may be written—recalling
that in the complex structure, we have given toX̂ the coordinateszj = xj+iwj are complex
holomorphic—as

F̂ 2,0 = π

2

∑
k,j

∂εj

∂xk
dzk ∧ dzj

F̂ 0,2 = −π
2

∑
k,j

∂εj

∂xk
dz̄k ∧ dz̄j

F̂ 1,1 = π

2

∑
k,j

(
∂εk

∂xj
+ ∂εj

∂xk

)
dzk ∧ dz̄j .

SinceS is Lagrangian, we havêF 0,2 = F̂ 2,0 = 0, so thatL̂ may be given a holomorphic
structure compatible with the connection∇̂. Moreover, we have

F̂ 1,1 = π
∑
k,j

∂εj

∂xk
dzk ∧ dz̄j .

Definition 4. The Fourier transform of(S,L) is the pair(L̂, ∇̂).

4. The non-transversal case

The results in Section 3.1 can be generalized to local systems supported on Lagrangian
submanifolds ofX other than sections. This allows us to enlarge the “dual” category on
which the inverse Fourier–Mukai transform (defined in Section 5) acts, to a category of
sheaves with connection (satisfying some suitable conditions) supported by complex sub-
varieties ofX̂. Such sheaves arise naturally in Fukaya’s treatment of mirror symmetry (see
footnote 1). We shall be interested in transforming local systems supported on a submanifold
S of X such that:

(C1) S is a Lagrangian subvariety ofX;
(C2) the intersectionSb = S ∩ Xb of S with a fiber ofX, when non-empty, is a (possibly

affine) subtorusSb of Xb whose dimension does not depend onb.
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LetLbe aU(1) local system onS and∇ the corresponding flat connection onL = L⊗CC∞X .
We define as before a Fourier–Mukai transform of the local system(S,L,∇L) at the sheaf
level as

L̂ = Rmp̂S,∗ ker∇L
r

wherem is the dimension of the toriSb. This definition is motivated by the following result.

Proposition 6. Let (S,L,∇L) be a local system supported on a Lagrangian varietyS

which fulfills the conditions C1 and C2. Then the sheafL is WITm.

Proof. It follows from Lemma 1 and Proposition 1. �

Lemma 1 and Proposition 1 also imply that after restriction to its support,L̂ is a line
bundle. We shall now show that, under some suitable conditions on the supportS, the
transformL̂ is supported on a complex submanifoldŜ of the dual familyX̂. More precisely,
we assume:

(C3) the vertical tangent spaces of the family of subtori{Sb}b∈f (S) are parallelly transported
by the Gauss–Manin connection∇GM regarded as a connection inTX.

This requirement can be translated into a more explicit form in terms of the action–angle
coordinates(x, y) we have previously introduced, in that it amounts to the condition that
the family of subtori{Sb} can be written as

g∑
j=1

a
j
i yj + χi = 0, i = 1, . . . , g −m

with the matrixaji constant and theχi are local functions onB.

Lemma 2. Conditions C1, C2 and C3 imply thatf (S) is a submanifold ofB of dimension
k = g −m, and that it can be parametrized by the firstk action coordinatesxj .

Proof. The first claim follows from the fact that the horizontal part of the tangent space to
S has constant dimension; the second from the Lagrangian condition which implies that the
local equations off (S) in B are linear in the action coordinates. �

Proposition 7. Let (S,L,∇) be a local system supported on a Lagrangian submanifoldS

fulfilling the conditions C1 and C2. The condition C3 is satisfied if and only if the support
Ŝ of the transformL̂ is a complex submanifold of̂X.

Proof. A proof is given in Appendix B. �

Remark 2. In our setting there is no constraint on the dimension ofX, the latter space is
assumed to be just symplectic, and we consider local systems supported on Lagrangian sub-
manifolds ofX. On the other hand, string-theoretic mirror symmetry assumes, on physical
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grounds, thatX is a (usually three-dimensional) Calabi–Yau manifold, and one considers
special Lagrangian supports.4 In this case, the condition thatS is special Lagrangian im-
plies, fork = 1, that the coefficientsaji are constant, so that this is a particular case within
our treatment. On the contrary, fork = 2 the specialty property seems to be unrelated to
the conditions that ensure the supportŜ to be complex holomorphic.

Proposition 8. Under the conditions ofProposition 7,the operator∇̂L (cf. Section 3)
induces onL̂ aU(1) connection.

Proof. This will use the proof of Proposition 7 given in Appendix B. We know that∇̂L
induces a connection on the Fourier–Mukai transform if the curvatureF of the Poincaré
bundle onZ = X ×B X̂ vanishes onS ×B Ŝ, whereS andŜ are the supports ofL andL̂,
respectively. In view of the form ofF, this condition is met if for eachb ∈ B the intersections
of S and Ŝ with the fibersXb, X̂b yield subtori ofXb, X̂b that are normal to each other.
But looking at the equations of the supports, Eqs. (B.1) and (B.4), and comparing with the
absolute case (Proposition 2), we see that this condition is fulfilled. �

We shall now prove that̂L, as a line bundle on̂S, has a holomorphic structure. Let∇̂ be
the connection induced on̂L.

Proposition 9. If the supportŜ of the transformed sheaf̂L is a complex submanifold of̂X,
then∇̂ induces a holomorphic structure on̂L.

Proof. The connection 1-form of the connection∇ can be written in an appropriate gauge
as

A = i

k∑
j=1

αj (x
1, . . . , xk)dxj + 2i π

g−k∑
�=1

ξ� dy�,

with the quantitiesξ� constant. From the proof of Proposition 1 given in the Appendix A,
we know that the transformed connection∇̂ is given in coordinates by the 1-form5

Â = −2i π
g∑

�=g−k+1

χ�(x
1, . . . , xk)dw� + i

k∑
j=1

αj (x
1, . . . , xk)dxj .

Rewriting this in terms ofw1, . . . , wk we obtain

Â = −2i π
g∑

�=g−k+1

k∑
j=1

χ�(x
1, . . . , xk) γ̃ �j dwj + i

k∑
j=1

αj (x
1, . . . , xk)dxj

4 Let us recall that a special Lagrangian submanifold of a Calabi–Yaun-foldX is an oriented realn-dimensional
submanifoldY which is Lagrangian with respect to the Kähler form ofX, and such that the global trivialization
Ω of the canonical bundle ofX may be chosen so that its imaginary part vanishes onY . For more details cf. [13].

5 Also in this case, we find that the transformed connection∇̂ satisfies the condition of Remark 1.
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where the coefficients̃γ �j are constant. Since d(
∑

j αj dxj ) = 0 because of the flatness of

∇, it follows that the curvature of̂∇ is given by

F̂ = −2i π
g∑

�=g−k+1

k∑
j,m=1

∂χ�

∂xj
γ̃ �m dxj ∧ dwm.

Sinceγ̃ g−k+jm = ∂ζ g−k+j /∂xm, where the functionsζ g+j are those of the Eq. (B.1), the
conditionF̂ 0,2 = 0 can be written as

g∑
�=g−k+1

[
∂ζ �

∂xj

∂χ�

∂xm
− ∂ζ �

∂xm

∂χ�

∂xj

]
= 0, 1 ≤ j < m ≤ k.

But this is the system of Eq. (B.6), therefore, whenS is Lagrangian, this condition is
automatically satisfied. �

Remark 3. (The higher rank case): So far we have for simplicity considered only the
transformation of local systems of rank one. However the higher rank case, under the same
conditions, can be treated along the same lines, obtaining on theX̂ side holomorphic vector
bundles of the corresponding rank supported on complex submanifolds ofX̂.

5. Invertibility

In this section, we shall prove that the Fourier–Mukai transform we have defined inverts.
However, we shall only discuss the inverse transform of rank 1 sheaves. The higher rank
case requires to consider Lagrangian submanifolds ofX which ramify overB, and this will
be done in a further paper of this series.

We shall, therefore, consider a holomorphic line bundleL̂ supported on ak-dimensional
complex submanifold̂S of X̂, equipped with a compatibleU(1) connection∇̂. Moreover,
we shall assume that:

(D1) Ŝ intersects the fibers of̂X along affine subtori of complex dimensionk;
(D2) the horizontal part of the connection∇̂ is flat (horizontality is given by the Gauss–Manin

connection);
(D3) the connection̂∇ is invariant under the action ofT g on X̂ (cf. Remark 3).

These conditions allow us to write the local connection form of∇̂ as

Â = i

k∑
j=1

αj (x
1, . . . , xk)dxj + 2i π

k∑
j=1

βj (x
1, . . . , xk)dwj ,

where the functionsαj satisfy (as a consequence of D2) the closure condition∂αj /∂x
� =

∂α�/∂x
j . This shows that the restriction of̂∇ to any fiberX̂b of X̂ → B yields a flat

connection onL̂|X̂b .
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Letp
Ŝ
, p̂

Ŝ
the canonical projections ofX×B Ŝ onto its factors. We consider the operator

∇L̂
r̂
= r̂ ◦ (p̂∗

Ŝ
∇L ⊗ 1+ 1⊗∇bP∨

Ŝ
)

and in terms of it we define a Fourier–Mukai transform from sheaves onX̂ to sheaves on
X (notice that we twist with the dual Poincaré bundleP∨).

Proposition 10. L is WITk, andL = Rkp
Ŝ,∗ ker∇L̂

r̂
is supported on a Lagrangian subman-

ifold S ofX such that every intersectionSb = S∩Xb is an affine subtorus ofXb of dimension
g− k (when non-empty). Moreover, the family of subtoriSb is parallelly transported by the
Gauss–Manin connection∇GM. Finally, a flat connection∇ is naturally induced onL.

Proof. The WIT condition follows immediately from Lemma 1. To show the remaining
part of the claim we write local equations forŜ as{

xk+j = ζ k+j (x1, . . . , xk), j = 1, . . . , g − k

wk+j = ∑k
i=1P

k+j
i (x1, . . . , xk) wi +Qk+j (x1, . . . , xk), j = 1, . . . , g − k.

Performing a fiberwise transform we obtain the following equations for the supportS of
the transformL:

yl +
g∑

m=k+1

Pml (x
1, . . . , xk)ym + βl(x

1, . . . , xk) = 0,

wherel = 1, . . . , k. It remains to show thatS is Lagrangian and that the family{Sb}b∈f̂ (S)
is parallelly transported by the Gauss–Manin connection. The latter point follows from the
complex structure of̂S (cf. Proposition 7): the Cauchy–Riemann equations forŜ imply that
the coefficientsP k+jl andQk+j are constant. As far as the Lagrangian property ofS is

concerned, the holomorphicity ofŜ andL̂ imply the Eq. (B.2) in the proof of Proposition
7 (in Appendix B). Therefore,S is Lagrangian. Observe that the transformed connection∇
has a 1-form given by

A = i

k∑
j=1

αj (x
1, . . . , xk)dxj − 2i π

g∑
m=k+1

Qm dym,

whence, we can immediately deduce its flatness. �

6. Conclusions

We summarize here the main results of this paper. We have shown that a suitably defined
Fourier–Mukai transformF maps aU(1) local system supported on a Lagrangian subvariety
S of X satisfying the conditions C1–C3 (cf. Section 4) into a holomorphic line bundleL̂
supported a complex subvarietyŜ of X̂; moreover,L̂ is endowed with aU(1) connection
such that conditions D1–D3 (Section 5) are satisfied.
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Conversely, if we start with a holomorphic line bundle supported on a complex subvariety
Ŝ of X̂ equipped with aU(1) connection∇̂ such that conditions D1–D3 are satisfied, we
define a dual Fourier–Mukai transform̂F that maps such objects into aU(1) local system
supported on a Lagrangian subvarietyS such that conditions C1–C3 are fulfilled. The
explicit forms of the two transforms we have written in Sections 3.1 and 4 show that the
transforms are one the inverse of the other. This parallels the classical result in [18] and
generalizes the one in [2], whose authors consider the case whereX andX̂ areS1-fibrations
overS1 (X̂ is actually an elliptic curve) andL is a local system on an affine lineS ⊂ X.
Observe that in this case the conditions C1–C3 and D1–D3 are trivially satisfied.

Finally, we would like to comment upon the relation of the construction we have described
in this paper with Fukaya’s homological mirror symmetry. First we notice that, in the absence
of the B-field and with no singular fibers, our “mirror manifold”X̂ coincides with Fukaya’s,
also taking into account its complex structure. LetS be a Lagrangian submanifold ofX,
andβ = (L,∇) a local system on it. Fukaya proposes to construct onX̂ a coherent sheaf
whose fiber at a point(b, α) ∈ X̂ (whereα = (Lα,∇α) is a local system on the fiberXb)
is given by the Floer homology

HF•((Xb, α), (S, β)).

This homology may be proved [10] to be isomorphic to

H •−η(Xb,S)(S ∩Xb,Hom∇(Lα,L)),

whereη(Xb, S) is a Maslov index, andHom∇(Lα,L) is the sheaf of∇-compatible mor-
phisms betweenLα andL. It is not difficult to show that, up to a dual, this fiber is isomorphic
to the fiber of our transform̂L. However, the concrete construction done in (see footnote
1) is not in terms of Floer homology, but it is an ad-hoc one, which may be compared with
ours whenX = T 2g, B = T g andS is a Lagrangian embedding ofT g. In this case, the
vector bundle constructed on̂X coincides with ours.

It should be noted that our construction provides on the “mirror side”X̂ more data, in
that we obtain on̂L a connection. It is interesting to note that this connection is not invariant
under Hamiltonian diffeomorphisms ofX, while the remaining geometric data onX̂ are.
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Appendix A

We provide here a sketch of the proof of Proposition 1. It involves a number of compu-
tations but it is conceptually very easy. For further details we refer to [17].

We first consider the case whenS is a one-dimensional affine subtorus ofT . The direct
imageRip̂S,∗(ker∇L

1 ) is by definition the sheaf associated to the presheafÛ  Hi(S ×
Û , ker∇L

1 ) � Hi
(
Ω•,0(p∗

SL⊗ PS)(S × Û ),∇L
1

)
. When i = 0, take an elements in

H 0(S × Û , ker∇L
1 ) and consider its restriction toS × {y}, with y ∈ Û , which is a global

section ofL⊗PS×{y}. This means thatPS×{y} is non-trivial for everyy in the complement of
kerψ , which is a dense subset ofT̂ (hereψ is the natural mapψ : T̂ → Hom(π1(S), U(1))).
The same holds forL⊗ PS×{y}. Since∇L

1 s|S×{y} = 0 for everyy ∈ T̂ , the restriction ofs
to S × {y} vanishes fory in a dense subset of̂T , so thats vanishes everywhere.

Wheni = 1 we need to write the equation ofS explicitly. For simplicity we only give
some details in the case dimT = 2. Let (y1, y2) be flat coordinates onT and(w1, w2)

flat dual coordinates on̂T . We pick a gauge where the Poincaré bundle has an automorphy
factor (cf. [7])

aP (y1, y2, w1, w2, λ
1, λ2, µ1, µ2) = e2π i(λ1w1+λ2w2).

The equation ofS in the universal cover ofT is given by an affine liney2 = ay1 + b. Let
A = ȳ1 dy1 be the connection form of the local system(L,∇L) onS. We need to compute
H 1(S× Û , ker∇L

1 ). So take an elementτ ∈ (Ω1,0(p∗
SL⊗PS)(S× Û ),∇L

1 ). Observe that
τ is closed with respect to∇L

1 because dimS = 1. If we let

τ = φ(ξ,w1, w2)dξ

whereξ is the natural coordinate onS, the automorphy condition satisfied byτ can be
expressed in the form

φ(ξ +
√
p2 + q2, w1, w2) = ep(w1+w̄1)+qw2φ(ξ,w1, w2)

having seta = q/p with q, p coprime.
Suppose thatτ is exact so that we can writeτ = ∇L

1 s wheres ∈ C∞(S × Û , ker∇L
1 ).

Thens can be written in the form

s(ξ, w1, w2) =
∫ ξ

0
φ(u,w1, w2)du+ c(w1, w2)

but this is well defined if and only if the automorphy conditions satisfied, and one can easily
check that this amounts to

c(w1, w2)(1− e2π i(p(w1+w̄1)+qw2)) = −
∫ √

p2+q2

0
φ(u,w1, w2)du.

This equation may be solved forc in the complement of the setŜ defined by

w2 = −
(

1

a
w1 − w̄1

a

)
;

thus, arguing as in [7], we obtain that the support ofR1p̂∗ ker∇L
1 is exactlyŜ.
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To compute the sheafR1p̂S,∗ ker∇L
1 , we note that the map

B : Ω1,0(p∗
SL⊗ P)(S × Û )→ C∞(Ŝ ∩ Û ), τ  → −

∫ √
p2+q2

0
φ(u,w1, w2)du

is surjective: iff ∈ C∞(Ŝ ∩ Û ) ands is a section of the Poincaré bundle overS × Ŝ, then
the 1-formτ = φ dξ defined by

φ(ξ,w1, w2) = β s(ξ,w1) f (w2),

with 1/β = − ∫√p2+q2

0 s(u,0)du, satisfiesB(τ) = f and the correct automorphy condi-

tion. Thus,H 1(S × Û , ker∇L
1 ) = C∞(Ŝ ∩ Û ).

The transformed sheaf is endowed with a flat connection induced by∇L
2 , the(0,1) part

of the connectionp∗
S∇L ⊗ 1 + 1 ⊗ ∇PS

, because the curvature of the Poincaré bundle

restricts to zero onS × Ŝ.
Of course,Rip̂S,∗(ker∇L

1 ) = 0 for i > 1 becauseS is one-dimensional. This proof is
extended to the case dimS > 1 by using a Künneth formula.

Appendix B

Here we prove Proposition 7. For notational convenience we suppose thatk ≤ g/2; the
complementary casek > g/2 can be treated similarly. In the action–angle coordinatesx

andy, we can write the local equations forS as{
yg−k+j = ηg−k+j (x1, . . . , xk, y1, . . . , yg−k), j = 1, . . . , k

xk+i = ζ k+i (x1, . . . , xk), i = 1, . . . , g − k.
(B.1)

SinceS is Lagrangian one has


δmj + ∑g

�=g−k+1
∂ζ �

∂xj

∂η�

∂ym
= 0, j,m = 1, . . . , k

∂ζ k+i

∂xm
+

g∑
�=g−k+1

∂ζ �

∂xm

∂η�

∂yk+i
= 0, i = 1, . . . , g − 2k;m = 1, . . . , k

∑g

�=g−k+1

[
∂ζ �

∂xj

∂η�

∂xm
− ∂ζ �

∂xm

∂η�

∂xj

]
= 0, 1 ≤ j < m ≤ k.

(B.2)

The equations of the subtoriSb can be written in a linear form

yg−k+j =
g−k∑
m=1

amg−k+j (x
1, . . . , xk) ym + χg−k+j (x1, . . . , xk),

j = 1, . . . , k. (B.3)
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To find the equations of̂S, we shall perform a fiberwise transform and use the Künneth
formula as in [7]. First we split every subtorusSb as a product of one-dimensional toriri(b)
which have linear equations given by{

yl = 0, l = 1, . . . , g − k, � �= i

yg−k+j = aig−k+j (x
1, . . . , xk)yi + χg−k+j (x1, . . . , xk), j = 1, . . . , k.

Observe that we can also split the local systemL onSb as a box product of local systems
Li (b) on ri(b) wherei = 1, . . . , g − k. Transforming the local systemLi (b) on ri(b), we
get the following equation for the support ofLi (b) (see Appendix A):

wi +
g∑

�=g−k+1

γ i� (x
1, . . . , xk)w� + ξ i

where the constant termξ i describes the automorphy ofLi (herei is fixed), and the matrix
γ i� satisfies the condition

∑g

j=1 γ
j
� a

i
j = 0. ThenŜ is the intersection of the supportsr̂i , so

that its equations are of the form

wk+i =
k∑

j=1

γ̃ k+ij (x1, . . . , xk) wj + ςk+i (x1, . . . , xk), i = 1, . . . , g − k

(B.4)

together with the second set of Eq. (B.1). Here we have solved with respect tow1, . . . , wk.
These equations may be used to replace the functionsη in Eq. (B.1), thus, getting


δmj + ∑g

�=g−k+1
∂ζ �

∂xj
am� = 0, j,m = 1, . . . , k

∂ζ k+i

∂xm
+

g∑
�=g−k+1

∂ζ �

∂xm
ak+i� = 0, i = 1, . . . , g − 2k;m = 1, . . . , k

(B.5)

g∑
�=g−k+1

[
∂ζ �

∂xj

∂χ�

∂xm
− ∂ζ �

∂xm

∂χ�

∂xi

]
= 0, 1 ≤ j < m ≤ k. (B.6)

The solution of Eq. (B.5) is

∂ζ k+i

∂xj
= γ̃ k+ij , j = 1, . . . , k, i = 1, . . . , g − k. (B.7)

If the submanifoldS is Lagrangian, the conditions Eq. (B.7) admit solutions inζ . We
must check that the supportŜ is holomorphic, i.e. the equations that define it fulfill the
Cauchy–Riemann conditions. The latters are satisfied if and only if the coefficientsγ̃ k+ij

do not depend on thex, but this is true if and only if the coefficientsγ k+ig−k+1 are in turn
independent of thex. As a result, we have proved that whenS is Lagrangian, the tangent
spaces to theSb are parallelly transported by∇GM if and only if Ŝ is holomorphic.
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One may note that the coefficientsχj play no role in the specification of the complex
structure ofŜ. Moreover, let us remark that Eq. (B.4) shows that the intersections of the
supportŜ with the fibersX̂b are affine subtori.
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